ROBOTICS # **Product specification** IRB 360 Trace back information: Workspace R19B 6-09 version a2 Checked in 2019-05-31 Skribenta version 5.3.012 ## **Product specification** IRB 360-1/1130 IRB 360-3/1130 IRB 360-8/1130 IRB 360-1/1600 IRB 360-6/1600 Document ID: 3HAC029963-001 Revision: V The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual. Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damages to persons or property, fitness for a specific purpose or the like. In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein. This manual and parts thereof must not be reproduced or copied without ABB's written permission. Keep for future reference. Additional copies of this manual may be obtained from ABB. Original instructions. © Copyright 2004-2019 ABB. All rights reserved. Specifications subject to change without notice. ## **Table of contents** | | Overview of this specification | | | |-----|--------------------------------|--|----| | 1_ | Desc | ription | 9 | | | 1.1 | Structure | 9 | | | | 1.1.1 Introduction to structure | 9 | | | | 1.1.2 Different robot version | 11 | | | | 1.1.3 Definition of version designation | 12 | | | 1.2 | Safety standards | 14 | | | | 1.2.1 Applicable standards | 14 | | | 1.3 | Installation | 16 | | | | 1.3.1 Introduction to installation | 16 | | | | 1.3.2 Operating requirements | 17 | | | | 1.3.3 Mounting the manipulator | 18 | | | 1.4 | Load diagrams | 22 | | | | 1.4.1 Introduction to load diagrams | 22 | | | | 1.4.2 Load diagrams | 23 | | | | 1.4.3 Hose set mounted on the manipulator arms | 30 | | | | 1.4.4 Mechanical interface | 31 | | | 1.5 | Maintenance and troubleshooting | 34 | | | | 1.5.1 Introduction to maintenance and trouble shooting | 34 | | | 1.6 | Robot motion | 35 | | | | 1.6.1 Introduction to robot motion | 35 | | | | 1.6.2 Performance according to ISO 9283 | 37 | | | | 1.6.3 Acceleration | 39 | | | 1.7 | Typical cycle times | 40 | | | | 1.7.1 Introduction to typical cycle times | 40 | | 2 | Snoo | ification of variants and options | 41 | | _ | Spec | • | 41 | | | 2.1 | Introduction to variants and options | 41 | | | 2.2 | Manipulator | 42 | | | 2.3 | Floor cables | 45 | | | 2.4 | Process | 46 | | | 2.5 | User documentation | 47 | | 3 | Acce | essories | 49 | | | 3.1 | Introduction to accessories | 49 | | l | d = >r | | | | ine | xek | | 51 | ## Overview of this specification ### About this product specification It describes the performance of the manipulator or a complete family of manipulators in terms of: - · The structure and dimensional prints - · The fulfilment of standards, safety and operating requirements - The load diagrams, mounting of extra equipment, the motion and the robot reach - · The specification of variant and options available ### Usage Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual. #### **Users** #### It is intended for: - · Product managers and product personnel - · Sales and marketing personnel - · Order and customer service personnel #### References | Reference | Document ID | |---|----------------| | Product specification - Controller IRC5 IRC5 with main computer DSQC1000. | 3HAC047400-001 | | Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 5.6x. | 3HAC050945-001 | | Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 6. | 3HAC050945-001 | | Product specification - PickMaster 3 | 3HAC041347-001 | | Product manual - IRB 360 | 3HAC030005-001 | | Product specification - Robot user documentation, IRC5 with RobotWare 6 | 3HAC052355-001 | #### Revisions | Revision | Description | |----------|--| | - | New Product specification | | Α | Figure for hole configuration updated | | В | Explanation of ISO values (new figure and table) User documentation on DVD | | С | Option Clean Room added General update for 9.1 release | ## Continued | Revision | Description | |----------|---| | D | New variant added | | E | General corrections | | F | Text for Standards updated | | G | Information regarding performance at 1-phase power supply | | Н | Load diagram for IRB 360-3/1130 adjusted and minor corrections. | | J | Table for ambient temperature adjustedISO data for IRB 360-1/1600 added | | К | Machinery directive updated Variant IRB 360-1/800 removed General corrections/update | | L | IRB 360-1/800 added againNew variant IRB 360-8/1130 added | | М | IRB 360-6/1600 addedMinor general corrections/update | | N | Text for ISO test adjusted | | Р | Minor corrections | | Q | Desciption of test cycle changed Text regarding detection of collisions adjusted | | R | Values for Backlash axis 4 are changed, and text deleted. | | s | Updated list of applicable standards. | | Т | Published in release 18.1. The following updates are done in this revision: • Dimension of Interface without axis 4 changed. • IRB360-1/800 new cycle time data added. | | U | Published in release 18.2. The following updates are done in this revision: • Updated the detergents that stainless version of the wash down robot is against. | | V | Published in release R19B The following updates are done in this revision: Option 174-2 Medium phased out. Option 218-9 Vacuum system phased out. Variant 435-82 IRB 360-1/800 phased out. | 1.1.1 Introduction to structure ## 1 Description #### 1.1 Structure #### 1.1.1 Introduction to structure ### **Robot family** The IRB 360 is ABB Robotics' latest generation of high performance industrial robots. Based on the famous IRB 340 robot family in a modular design. It is specially designed for industries with a great need for flexible automation, such as pick and place operations and assembly. The IRB 360 is extremely powerful with an acceleration of up to 10 g's, and a handling capacity of up to 8 kg. Thanks to optimized drive-chains and ABB's patented QuickMove TM functions it is the fastest robot in its class, up to 200 picks per minute (defined by cycle and load). ## **Operating system** The robot is equipped with the IRC5 controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. see *Product specification - Controller IRC5 with FlexPendant*. #### Safety Safety standards valid for complete robot, manipulator and controller. #### Additional functionality For additional functionality, the robot can be equipped with optional software for application support - communication features - network communication - and advanced functions such as multi-tasking, sensor control, etc. For a complete description on optional software, see *Product specification - Controller software IRC5*. *PickMaster* is a specific application software for vision guided picking. It is providing a task-oriented programming and executions of fast pick and place operations, see *Product specification - PickMaster 3*. #### Clean room robots xx0900000435 The clean room robots are classified for room class 5 according to ISO 14644-1. For options not selectable together with Clean Room, see *Specification of variants and options on page 41*. ## 1.1.1 Introduction to structure *Continued* #### **Stainless Wash Down Robots** The stainless version of the wash down robot has a stainless steel base, and all other main parts, such as delta plate, arm system and telescopic shaft made of stainless steel/composites. The stainless version is verified against the following detergents: - Strongly alkaline: Topaz MD4 (3%) - Strongly alkaline with chloride: Topaz CL2 (3%) - Strongly acid (for removing calcium oxide): Topaz AC3 (3%) - Acid (for disinfection): P3-topactive DES (1%) #### Washdown statement All components for WashDown and Stainless WashDown protection class have been found to comply with USDA/FDA, Code of Federal Regulations Title 21 regarding choice of material, material behavior, and sanitary operations, as per 31 December 2007. Changes in the USDA/FDA regulations will be incorporated in the specification when appropriate. (Relevant chapters of CFR are part 100-199). The intended use is incidental food contact. Any gripper to be used must be investigated separately. #### **Manipulator axes** ### 1.1.2 Different robot version ## 1.1.2 Different robot version ### General The IRB 360 is available in six different versions. ## **Robot types** The following different standard robot types are available: | Robot type | Handling capacity (kg) | |----------------|------------------------| | IRB 360-1/800 | 1 kg | | IRB 360-1/1130 | 1 kg | | IRB 360-3/1130 | 3 kg | | IRB 360-8/1130 | 8 kg | | IRB 360-1/1600 | 1 kg | | IRB 360-6/1600 | 6 kg | ## 1.1.3 Definition of version designation ## 1.1.3 Definition of version designation ## Weight | Manipulator | Weight | |-----------------------|--------| | Standard
Wash Down | 120 kg | | Stainless WashDown | 145 kg | #### Other technical data | Data | Description | Note | |------|--|--| | | The sound pressure level outside the working space | < 70 dB (A) Leq (acc. to Machinery directive 2006/42/EG) | ## Power consumption at max load | Type of movement | IRB 360/1 | |--|-----------| | Typical pick - and - place cycle with 1 kg payload | 0.477 kW | ## 1.1.3 Definition of version designation Continued IRB 360-1, IRB 360-3, 360-8, 360-1/800, IRB 360-1/1600 and IRB 360-6/1600 | Robot variant | A | В | С | R | |----------------|--------|-----|-----|-----| | IRB 360-1/800 | 960 | 200 | - | 400 | | IRB 360-1/1130 | 865 | 250 | 50 | 565 | | IRB 360-3/1130 | 865 | 250 | 50 | 565 | | IRB 360-8/1130 | 892 | 250 | 100 | 565 | | IRB 360-1/1600 | 1112 | 300 | 50 | 800 | | IRB 360-6/1600 | 1107.5 | 305 | 155 | 800 | ### 1.2.1 Applicable standards ## 1.2 Safety standards ## 1.2.1 Applicable standards ### Note The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed. #### Standards, EN ISO The product is designed in accordance with the requirements of: | Standard | Description | |---|--| | EN ISO 12100:2010 | Safety of machinery - General principles for design - Risk assessment and risk reduction | | EN ISO 13849-1:2015 | Safety of machinery, safety related parts of control systems - Part 1: General principles for design | | EN ISO 13850:2015 | Safety of machinery - Emergency stop - Principles for design | | EN ISO 10218-1:2011 | Robots for industrial environments - Safety requirements -Part 1 Robot | | ISO 9787:2013 | Robots and robotic devices Coordinate systems and motion nomenclatures | | ISO 9283:1998 | Manipulating industrial robots, performance criteria, and related test methods | | EN ISO 14644-1:2015 ⁱ | Classification of air cleanliness | | EN ISO 13732-1:2008 | Ergonomics of the thermal environment - Part 1 | | EN 61000-6-4:2007 +
A1:2011
IEC 61000-6-4:2006 +
A1:2010
(option 129-1) | EMC, Generic emission | | EN 61000-6-2:2005
IEC 61000-6-2:2005 | EMC, Generic immunity | | EN IEC 60974-1:2012 ⁱⁱ | Arc welding equipment - Part 1: Welding power sources | | EN IEC 60974-10:2014 ⁱⁱ | Arc welding equipment - Part 10: EMC requirements | | EN IEC 60204-1:2006 | Safety of machinery - Electrical equipment of machines - Part 1 General requirements | | IEC 60529:1989 + A2:2013 | Degrees of protection provided by enclosures (IP code) | i Only robots with protection Clean Room. ## **European standards** | Standard | Description | |-------------------------|---| | EN 614-1:2006 + A1:2009 | Safety of machinery - Ergonomic design principles - Part 1:
Terminology and general principles | Only valid for arc welding robots. Replaces EN IEC 61000-6-4 for arc welding robots. # 1.2.1 Applicable standards *Continued* | Standard | Description | |-----------------------|---------------------------------------------------------------------------------------------| | EN 574:1996 + A1:2008 | Safety of machinery - Two-hand control devices - Functional aspects - Principles for design | ## Other standards | Standard | Description | |------------------|-------------------------------------------------------------------| | ANSI/RIA R15.06 | Safety requirements for industrial robots and robot systems | | ANSI/UL 1740 | Safety standard for robots and robotic equipment | | CAN/CSA Z 434-14 | Industrial robots and robot Systems - General safety requirements | ## 1 Description ### 1.3.1 Introduction to installation ## 1.3 Installation ### 1.3.1 Introduction to installation ### General Depending on robot version an end effector of max weight 1 to 8 kg including payload, can be mounted on the robot mounting flange. See *Load diagrams on page 22*. Other equipment, such as a hose, can be mounted on the upper and lower arm, max weight 300g/m. See *Hose set mounted on the manipulator arms on page 30*. ## 1.3.2 Operating requirements #### **Protection standards** | Description | Protection standard IEC529 | |----------------------------------|----------------------------| | Standard | IP54 | | Wash Down | IP67 | | Stainless Washdown | IP69K | | Clean Room, Stainless Clean Room | IP54 | #### Clean room standards | Description | Protection standard DIN ISO 14644 | |----------------------|-----------------------------------| | Standard | Class 7 | | Clean Room | Class 5 | | Stainless Clean Room | Class 5 | ### **Explosive environments** The robot must not be located or operated in an explosive environment. ### **Ambient temperature** | Description | Standard/Option | Temperature | |--------------------------------------------------|-----------------|----------------------------------------------------------| | Manipulator during operation | Standard | 0°C ⁱ (+32°F) to +45°C (+113°F) | | For the controller | Standard/Option | Product specification - Controller IRC5 with FlexPendant | | Complete robot during transportation and storage | Standard | -25°C (-13°F) to +55°C (+131°F) | At low environmental temperature < 10° C is, as with any other machine, a warm-up phase recommended to be run with the robot. Below 5° C this warm-up phase is mandatory. Otherwise there is a risk that the robot stops or run with lower performance due to temperature dependent oil- and grease viscosity. ## **Relative humidity** | Description | Relative humidity | |--------------------------------------------------|----------------------------------| | Complete robot during transportation and storage | Max. 95% at constant temperature | | Complete robot during operation | Max. 95% at constant temperature | #### 1.3.3 Mounting the manipulator ## 1.3.3 Mounting the manipulator #### General Maximum load in relation to the base coordinate system. See Figure below. Robot version IRB 360-1/800, IRB 360-1/1130, IRB 360-1/1600, IRB 360-3/1130 | Force N | Max. load in operation | |---------|------------------------| | Fx | ±330 N | | Fy | ±260 N | | Fz | -1500 ±170 N | | Torque Nm | Max. load in operation | |-----------|------------------------| | Mx | ±200 Nm | | Му | ±230 Nm | | Mz | ±100 Nm | #### Robot version IRB 360-8/1130, IRB 360-6/1600 | Force N | Max. load in operation | |---------|------------------------| | Fx | ±550 N | | Fy | ±500 N | | Fz | -1500 ±460 N | | Torque Nm | Max. load in operation | |-----------|------------------------| | Mx | ±380 Nm | | Му | ±440 Nm | | Mz | ±180 Nm | Robot frame is not included in the delivery. #### Stiffness of robot frame The stiffness of the robot frame must be designed to minimize the influence on the dynamic behavior of the robot. It is recommended that a frame with a lowest natural frequency (with the robot mounted in the frame) higher than 17 Hz is used for robot versions IRB 360-1/1130, IRB 360-3/1130, IRB 360-1/1600 and a frame with a lowest natural frequency higher than 40 Hz is used for robot version IRB 360-8/1130, IRB 360-6/1600. TuneServo can be used for adapting the robot tuning to a non-optimal foundation. #### Note The working space is shown in the first figure in *Robot motion on page 35*. ## 1.3.3 Mounting the manipulator Continued The three support points of the manipulator base box shall be mounted against three flat surfaces within the specification above. Shims is used if necessary. # 1.3.3 Mounting the manipulator *Continued* ## Fastening the robot B - B #### xx0900000414 | Position | Description | |----------|-----------------------------------------------------------------------------------------------------------------------| | Α | M12 screw | | В | Bonded seal washer, rubber/metal, if not a waterproof joint is required a plain washer can be used | | С | Washer, EPDM-rubber, compressed 50%, If no need for waterproof joint is required you can disregard the rubber washer. | | D | Spacer, metal | | E | Robot frame | ## 1.3.3 Mounting the manipulator Continued xx0900000415 | fastening the robot to the | M12 x (50) 8.8 screw with yield strength 640 N/mm2 or M12 x (50) screw A2-70 with yield strength 450N/mm2 The length of the screws depend on the design of the robot frame. | |----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Torque value | 70 Nm | #### **Detection of collisions** The IRB 360 has a basic feature that can detect a collision. This is a system that detects divergence between calculated and actual motor torques. The controller can also stop the robot if load parameters are defined incorrectly, due to that the moment of the torque deviates from the calculated. An advanced option that includes the possibility to manually setting parameters is called *Collision Detection*. For more detailed information see Application manual - Controller software IRC5. #### 1.4.1 Introduction to load diagrams ## 1.4 Load diagrams ## 1.4.1 Introduction to load diagrams ### General #### **CAUTION** It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot. If incorrect load data and/or loads outside load diagram is used the following parts can be damaged due to overload: - · motors - gearboxes - · mechanical structure #### **CAUTION** Robots running with incorrect load data and/or with loads outside load diagram will not be covered by the robot warranty. ## 1.4.2 Load diagrams ### Note The weight permitted for loads includes grippers etc. The data types loaddata and tooldata with moment of inertia must be used! ## IRB360-1/1130, IRB 360-1/1600 and IRB 360-1/800 Loads 0.1 kg, 0.5 kg and 1.0 kg: #### xx0900000416 | | Description | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Z | See the above diagram and the coordinate system in <i>Product specification - Controller IRC5 with FlexPendant</i> . | | L | Distance in X-Y plane from Z-axis to the mass center of gravity of the load. | | tooldata | Weight of the gripper (kg). The center of gravity of the gripper (mm). The moment of inertia of the gripper (kgm²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | ## 1.4.2 Load diagrams ### Continued | | Description | | | | | | | | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | loaddata | Weight of the product (kg). | | | | | | | | | | The center of gravity of the product (mm). | | | | | | | | | | The moment of inertia of the product (kgm ²). | | | | | | | | | | No value or wrong value may damage the robot. | | | | | | | | | | For more information see <i>Technical reference manual - RAPID Instructions and Data types</i> | | | | | | | | | | For large off-sets in z-direction some combinations of J_o and movement of robot requires use of RAPID commands ${\tt AccSet}$ and/or ${\tt TuneServo}$ to minimize vibration of tool. This applies for limited inherent gripper stiffness and the backlash of the picked load, for example a shaking bag. | | | | | | | | | | Note | | | | | | | | | | Best possible performance of the IRB 360 is achieved when the gripper's center of gravity is close to axis 4 (L= 0 mm in load diagram). | | | | | | | | | | J _o =own moment of inertia of the total handle weight. | | | | | | | | ### IRB360-3/1130 Load 1.0 kg - 3.0 kg xx0900000419 Load diagram above is valid for $\rm J_{o~zz}$ from 0 - 0.0212 $\rm kgm^2$. | | Description | | | | | | |---|----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | Z | See the above diagram and the coordinate system in <i>Product specification - Controller IRC5 with FlexPendant</i> . | | | | | | | L | Distance in X-Y plane from Z-axis to the mass center of gravity of the load. | | | | | | | | Description | |----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | tooldata | Weight of the gripper (kg). The center of gravity of the gripper (mm). The moment of inertia of the gripper (kgm²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | | loaddata | Weight of the product (kg). The center of gravity of the product (mm). The moment of inertia of the product (kgm²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | | | Max. allowed mass moments of inertia is $J_{0zz}=0.055kgm^2$. For increasing values of J_{0zz} the allowed L-offset of the center of gravity decreases linearly from the values in load diagrams down to zero. For an example of high inertia see diagram on next page. For large off-sets in z-direction some combinations of J_0 and movement of robot requires use of RAPID commands <code>AccSet</code> and/or <code>TuneServo</code> to minimize vibration of tool. This applies for limited inherent gripper stiffness and the backlash of the picked load, for example a shaking bag. | | | Note Best possible performance of the IRB 360 is achieved when the gripper's center of gravity is close to axis 4 (L= 0 mm in load diagram). J_o =own moment of inertia of the total handle weight. | Figure below shows load diagrams for $J_{o\ zz}$ = 0.04 kgm². ### IRB360-8/1130 ## Load 1.0 kg - 8.0 kg xx1200001391 Load diagram above is valid for $J_{o\;zz}$ from 0 - $0.1 kgm^2.$ | | Description | | | | | | | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--| | Z | See the above diagram and the coordinate system in <i>Product specification - Controller IRC5 with FlexPendant</i> . | | | | | | | | L | Distance in X-Y plane from Z-axis to the mass center of gravity of the load. | | | | | | | | tooldata | Weight of the gripper (kg). The center of gravity of the gripper (mm). The moment of inertia of the gripper (kgm ²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instruction Functions and Data types</i> | | | | | | | | loaddata | Weight of the product (kg). The center of gravity of the product (mm). The moment of inertia of the product (kgm²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | | | | | | | #### **Description** Max. allowed mass moments of inertia is $J_{ozz} = 0.15 \text{ kgm}^2$. For large off-sets in z-direction some combinations of J_o and movement of robot requires use of RAPID commands ${\tt AccSet}$ and/or ${\tt TuneServo}$ to minimize vibration of tool. This applies for limited inherent gripper stiffness and the backlash of the picked load, for example a shaking bag. #### Note Best possible performance of the IRB 360 is achieved when the gripper's center of gravity is close to axis 4 (L=0 mm in load diagram). Jo=own moment of inertia of the total handle weight. #### IRB360-6/1600 Load 1.0 kg - 6.0 kg xx1300000861 Load diagram above is valid for $J_{o\ zz}$ from 0 - 0.1kgm². | | Description | | | | | | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | Z | See the above diagram and the coordinate system in <i>Product specification - Controller IRC5 with FlexPendant</i> . | | | | | | | L | Distance in X-Y plane from Z-axis to the mass center of gravity of the load. | | | | | | | tooldata | Weight of the gripper (kg). The center of gravity of the gripper (mm). The moment of inertia of the gripper (kgm²). No value or wrong value may damage the robot. For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | | | | | | ## 1.4.2 Load diagrams ## Continued | | Description | | | | | | | | |----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--| | loaddata | Weight of the product (kg). | | | | | | | | | | The center of gravity of the product (mm). | | | | | | | | | | The moment of inertia of the product (kgm ²). | | | | | | | | | | No value or wrong value may damage the robot. | | | | | | | | | | For more information see <i>Technical reference manual - RAPID Instructions, Functions and Data types</i> | | | | | | | | | | Max. allowed mass moments of inertia is $J_{ozz} = 0.15 \text{ kgm}^2$. | | | | | | | | | | For large off-sets in z-direction some combinations of J_o and movement of robot requires use of RAPID commands ${\tt AccSet}$ and/or ${\tt TuneServo}$ to minimize vibration of tool. This applies for limited inherent gripper stiffness and the backlash of the picked load, for example a shaking bag. | | | | | | | | | | Note | | | | | | | | | | Best possible performance of the IRB 360 is achieved when the gripper's center of gravity is close to axis 4 (L= 0 mm in load diagram). | | | | | | | | | | J _o =own moment of inertia of the total handle weight. | | | | | | | | ## Extra equipment mounted on the manipulator arms xx0900000420 | M1 Limita | | Limitation lines for center of gravity for M1 | |-----------|----|-----------------------------------------------| | | M2 | Limitation lines for center of gravity for M2 | The robot is tuned for the Vacuum system or medium sized hose (options). If one of these options is used no extra load should be defined. If neither the vacuum system nor the medium sized hose is chosen: - and both M1 and M2 are less than 175 g each, the robot can run with full performance and no extra load should be defined. - and M1 is more than 175 g, an extra load should be defined in the load definition. The extra load should be M1-175 g. Maximum extra load allowed is 175 g (M1 max = 350g). - and M2 is more than 175 g, an extra load should be defined in the load definition. The extra load should be M2-175 g. Maximum extra load allowed is 175 g (M2 max = 350 g). - The extra load should be defined in TCP 0 ## 1.4.3 Hose set mounted on the manipulator arms ## 1.4.3 Hose set mounted on the manipulator arms ### General xx0900000422 ## 1.4.4 Mechanical interface ## IRB 360-1/1130, IRB 360-3/1130, IRB 360-1/800, IRB 360-1/1600 xx0700000471 | Position | Description | | | | |----------|--------------------------------------|--|--|--| | Α | Free space, depth 6 mm | | | | | В | R1/4" | | | | | С | Ø 14 H8 depth 4 mm | | | | | D | Key grip = width 22 mm height 5,5 mm | | | | | E | Ø 25 h8 depth 6 mm | | | | ## 1.4.4 Mechanical interface ### Continued ## IRB 360-8/1130, IRB 360-6/1600 ## 1.4.4 Mechanical interface Continued ### Interface without axis 4 ## IRB 360-1/1130, IRB 360-3/1130, IRB 360-1/800, IRB 360-1/1600 en0900000424 1.5.1 Introduction to maintenance and trouble shooting ## 1.5 Maintenance and troubleshooting ## 1.5.1 Introduction to maintenance and trouble shooting ### General The robot requires only minimum maintenance during operation. It has been designed to make it as easy to service as possible: - · Maintenance-free AC motors are used. - · Oil is used for the gear boxes. - All cabling is fixed, no movements. In the unlikely event of a failure, its modular design makes it easy to change. #### Maintenance The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see *Product manual - IRB 360*. ## 1.6 Robot motion ## 1.6.1 Introduction to robot motion ## General ### Note The extreme position of the robot arm is shown in *Extreme position on page 36*. xx0900000426 | Position | Description | |----------|---------------------------------------------------------------------------------------------| | Α | Extreme position, see Extreme position on page 36. | | В | Maximum working space inside cylinder. Working space can be reduced in x-y-z coordinates. | | С | Marked area = actual working area | | D | Base coordinate system | | Е | Radius 565 mm for IRB 360-1(3, 8)/1130, 400 for IRB 360-1/800 and 800 for IRB 360-1(6)/1600 | # 1.6.1 Introduction to robot motion *Continued* ## Extreme position xx0900000427 | Position | Description | | | | | |----------|--------------------------------------------------------------|--|--|--|--| | Α | TCP (this position x=0, y=0, z=865) | | | | | | | TCP (this position x=0, y=0, z=892) Valid for IRB 360-8/1130 | | | | | | | A | В | С | D | E | F | R | |-------------------|--------|--------|-----|-------|-------|-----|-----| | IRB 360-1/800 | 1160 | 960 | 480 | - | - | 275 | 251 | | IRB 360-1(3)/1130 | 1115 | 865 | 646 | 28.5 | 389,5 | 275 | 366 | | IRB 360-1/1600 | 1412 | 1112 | 880 | 95 | 438 | 275 | 447 | | IRB 360-8/1130 | 1142 | 892 | 650 | 28,5 | 389.5 | 275 | 366 | | IRB 360-6/1600 | 1412.5 | 1107.5 | 883 | 148.3 | 478.9 | 275 | 515 | #### 1.6.2 Performance according to ISO 9283 #### General At rated load and 0.8 m/s velocity on ISO test plane with all four robot axes in motion, with different payload. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result. The figures for AP, RP, AT and RT are measured according to figure below. xx0800000424 | Position | Description | Position | Description | |----------|-------------------------------------------------|----------|-----------------------------------------------------| | Α | Programmed position | E | Programmed path | | В | Mean position at program execution | D | Actual path at program execution | | AP | Mean distance from pro-
grammed position | AT | Max deviation from E to average path | | RP | Tolerance of position B at repeated positioning | RT | Tolerance of the path at repeated program execution | | IRB 360-1/1130, IRB 360-3/1130 and IRB 360-8/1130 | At 0.1 kg | At 1.0 kg | At 3.0 kg | At 8.0 kg | |--|-----------|-----------|-----------|-----------| | Pose accuracy, AP (mm) | 0.01 | 0.04 | 0.10 | 0.04 | | Pose repeatability, RP (mm) | 0.10 | 0.09 | 0.06 | 0.07 | | Pose stabilization time, Pst (s) within 0.2 mm of the position | i | 0.03 | 0.05 | 0.05 | | Path accuracy, AT (mm) | 0.51 | 0.52 | 1.00 | 2.32 | | Path repeatability, RT (mm) | 0.30 | 0.21 | 0.14 | 0.10 | i Data not yet available. | IRB 360-1/800 | At 1.0 kg | |----------------------------------|-----------| | Pose accuracy, AP (mm) | 0.07 | | Pose repeatability, RP (mm) | 0.04 | | Pose stabilization time, Pst (s) | 0.03 | | Path accuracy, AT (mm) | 0.22 | Continues on next page # 1.6.2 Performance according to ISO 9283 *Continued* | IRB 360-1/800 | At 1.0 kg | |-----------------------------|-----------| | Path repeatability, RT (mm) | 0.15 | | IRB 360-1(6)/1600 | At 1.0 kg | At 6.0 kg | |----------------------------------|-----------|-----------| | Pose accuracy, AP (mm) | 0.04 | 0.01 | | Pose repeatability, RP (mm) | 0.03 | 0.03 | | Pose stabilization time, Pst (s) | 0.08 | 0.38 | | Path accuracy, AT (mm) | 0.42 | 1.91 | | Path repeatability, RT (mm) | 0.33 | 0.13 | #### Backlash axis 4 | Protection class | Value | |---------------------|-------| | Standard | 0.8° | | WashDown | 1.0° | | Stainless Wash Down | 0.8° | # Velocity | Direction | Description | |-----------|-------------| | x, y, z | 10 m/s | | θ | 2880 º/s | 1.6.3 Acceleration # 1.6.3 Acceleration #### General | Direc-
tion | IRB 360-1/800 | IRB 360-1/1130 | IRB 360-3/1130 | IRB 360-8/1130 | IRB 360-1/1600 | |----------------|-------------------------|-------------------------|-------------------------|-------------------------|---------------------------------| | x, y, z | 150 m/s ² | 150 m/s ² | 100 m/s ² | 100 m/s ² | ⁱ rad/s ² | | θ | 1200 rad/s ² | 1200 rad/s ² | 1200 rad/s ² | 1200 rad/s ² | i rad/s² | i Data not yet available. | Direction | IRB 360-6/1600 | |-----------|-------------------------| | x, y, z | 100 m/s ² | | θ | 1200 rad/s ² | #### 1.7.1 Introduction to typical cycle times #### 1.7 Typical cycle times #### 1.7.1 Introduction to typical cycle times #### General Both cycles incorporate an air activation time of 35 ms for picking and 35 ms for placing. Air activation takes place during the cycle time. # Description of typical cycles Cycle 1 is a 25 - 305 - 25 movement, with 90 degrees rotation of axis 4. Cycle 2 is a 90 - 400 - 90 movement, with 90 degrees rotation of axis 4. #### Approximate cycle times Performance (ppm= pick per minute) in the table below is valid for robots with protection class Standard and WashDown. | | IRB 360-1/ | IRB 360-1/1130 | | IRB 360-3/1130 | | | |---------|------------|----------------|--------|----------------|--------|--| | Payload | 0.1 kg | 1.0 kg | 0.1 kg | 1.0 kg | 3.0 kg | | | Cycle 1 | 200 | 170 | 150 | 150 | 115 | | | Cycle 2 | 135 | 120 | 100 | 100 | 80 | | | | IRB 360-8/1130 | | | | |---------|---------------------|-----|-----|--| | Payload | 1.0 kg 4.0 kg 8.0kg | | | | | Cycle 1 | 160 | 140 | 100 | | | Cycle 2 | 110 | 90 | 65 | | | | IRB 360-1/800 | | IRB 360-1/16 | 600 | |---------|---------------|--------|--------------|--------| | Payload | 0.1 kg | 1.0 kg | 0.1 kg | 1.0 kg | | Cycle 1 | 180 | 155 | 170 | 150 | | Cycle 2 | 120 | 115 | 120 | 110 | | | IRB 360-6/1600 | | | |---------|----------------|--------|-------| | Payload | 1.0 kg | 3.0 kg | 6.0kg | | Cycle 1 | 140 | 125 | 100 | | Cycle 2 | 105 | 95 | 75 | Robots with protection class Stainless WashDown typically have 90-95% of the performance valid for the robots with protection class Standard or WashDown. #### 1-phase power supply No noticeable reduction in cycle time has been observed for typical pick and place cycles (25/305/25) for an IRB 360-3/1130 with 3 kg payload with 220 V and default settings. To test the cycle time RobotStudio can be used. For detailed information see the system parameter *Mains tolerance min*, in *Technical reference manual - System parameters*. 2.1 Introduction to variants and options # 2 Specification of variants and options #### 2.1 Introduction to variants and options #### General The different variants and options for the IRB 360 are described in the following sections. The same option numbers are used here as in the specification form. #### **Related information** For the controller see Product manual - OmniCore C30. For the software options see Application manual - Controller software IRC5. #### 2.2 Manipulator ### 2.2 Manipulator #### **Variants** | Option | Description | Note | |---------|----------------|--| | 435-80 | IRB 360-1/1130 | | | 435-81 | IRB 360-3/1130 | | | 435-102 | IRB 360-1/1600 | Not together with options 912-3, 912-2, 174-1 and 887-1 | | 435-120 | IRB 360-8/1130 | Not together with options 912-3, 912-2, 287-1, and 887-1 | | 435-125 | IRB 360-6/1600 | Not together with options 912-3, 912-2, 287-1, and 887-1 | #### **Protection class** | Option | Description | Note | |--------|-------------|---------| | 287-1 | Clean Room | Class 5 | #### Base box | Option | Protection class | Note | |--------|-------------------|------| | 911-1 | Standard/WashDown | | | 911-2 | Stainless | | #### **Arm system** | Option | Protection class | Note | |--------|------------------|--------------------------------| | 912-1 | Standard | Not together with option 287-1 | | 912-2 | WashDown | | | 912-3 | Stainless | | #### Axis 4 No telescopic shaft and a delta plate without swivel are delivered. | Option | Description | Note | |--------|-------------|--------------------------------| | 887-1 | No axis 4 | Not together with option 912-3 | #### Signs on manipulator | Option | Description | Note | |--------|-------------|------| | 334-1 | ABB | | | 334-3 | NONE | | #### Continues on next page 2.2 Manipulator Continued #### **Media outlet** | Option | Description | |--------|---| | 218-5 | Signals and power. The customer signal and power are connected directly to the robot base to one FCI 12-pin UT001412SHT (R2.CP) and one FCI 23-pin UT001823SHT (R2.CS) connector. The cable between manipulator and controller is included. The signal and power are connected to one 12-pole screw terminal in the controller. | #### Note Only one of the options 218-5 can be selected. #### Resolver connection, axis 7 A connector for resolver signals for axis 7 located on the base box. | Option | Description | |--------|-------------| | 864-1 | On base | #### Safety lamp | Option | Description | |--------|--| | 213-1 | A safety lamp with an orange fixed light can be mounted on the robot frame. Cable length 400 mm. The lamp is active in MOTORS ON mode. | Continues on next page # 2.2 Manipulator Continued xx0900000429 # Warranty | Option | Туре | Description | |--------|-------------------------------|---| | 438-1 | Standard warranty | Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply. | | 438-2 | Standard warranty + 12 months | Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements. | | 438-4 | Standard warranty + 18 months | Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements. | | 438-5 | Standard warranty + 24 months | Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements. | | 438-6 | Standard warranty + 6 months | Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply. | | 438-7 | Standard warranty + 30 months | Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply. | | 438-8 | Stock warranty | Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig. | | | | Note | | | | Special conditions are applicable, see <i>Robotics Warranty Directives</i> . | 2.3 Floor cables #### 2.3 Floor cables ### Manipulator cable - length | Option | Description | |--------|-------------| | 210- | 3 m | | 210-2 | 7 m | | 210-3 | 15 m | | 210-4 | 22 m | | 210-5 | 30 m | # Connection of parallel communication | Option | Description | |--------|-------------| | 94-1 | 7 m | | 94-2 | 15 m | | 94-4 | 30 m | #### 2.4 Process #### 2.4 Process #### **Process module** | Option | Туре | Description | |--------|---------------------|--| | 768-1 | Empty cabinet small | See Product specification - Controller IRC5 with FlexPendant | | 768-2 | Empty cabinet large | See Product specification - Controller IRC5 with FlexPendant | | 715-1 | Installation kit | See Product specification - Controller IRC5 with FlexPendant | 2.5 User documentation #### 2.5 User documentation #### **User documentation** The user documentation describes the robot in detail, including service and safety instructions. All documents can be found via myABB Business Portal, www.myportal.abb.com. 3.1 Introduction to accessories # 3 Accessories #### 3.1 Introduction to accessories #### General There is a range of tools and equipment available, especially designed for the manipulator. #### Basic software and software options for robot and PC For more information, see *Product specification - Controller IRC5* and *Product specification - Controller software IRC5*. #### PickMaster and vision system For more information, see *Product specification - PickMaster 3* and *Application manual - PickMaster 3*. #### Index S safety standards, 14 service instructions, 47 standards, 14 accessories, 49 ANSI, 15 CAN, 15 EN, 14 EN IEC, 14 EN ISO, 14 documentation, 47 standard warranty, 44 stock warranty, 44 instructions, 47 manuals, 47 user documentation, 47 options, 41 variants, 41 W product standards, 14 warranty, 44 ABB AB, Robotics Robotics and Motion S-721 68 VÄSTERÅS, Sweden Telephone +46 (0) 21 344 400 #### ABB AS, Robotics Robotics and Motion Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000 #### ABB Engineering (Shanghai) Ltd. Robotics and Motion No. 4528 Kangxin Highway PuDong District SHANGHAI 201319, China Telephone: +86 21 6105 6666 ABB Inc. **Robotics and Motion** 1250 Brown Road Auburn Hills, MI 48326 USA Telephone: +1 248 391 9000 abb.com/robotics